If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x+15=159
We move all terms to the left:
x^2+x+15-(159)=0
We add all the numbers together, and all the variables
x^2+x-144=0
a = 1; b = 1; c = -144;
Δ = b2-4ac
Δ = 12-4·1·(-144)
Δ = 577
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{577}}{2*1}=\frac{-1-\sqrt{577}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{577}}{2*1}=\frac{-1+\sqrt{577}}{2} $
| 21=d+d1.33 | | m•9-1=-2 | | -a=-1/6 | | 2/5(5y-20)=-8 | | -5y+39=-2y+18-3y | | 7a-27=4a+1 | | 9-4n=-5 | | -1+6x+x=11 | | 5x-25=2 | | 8/3x=x+7/6-2x | | x2-x-15=159 | | 3(x+1)-(2x-4)=6 | | n+5•-16=-1 | | x-6=-4x+3-9+13 | | 7j+5=8j+8–2 | | -5x=17=-33 | | 8x-430=7x-364 | | x+2x+15=159 | | y/10+2=14 | | √(x^2+36=8) | | 3x+2(x-3)=3x-10 | | x-2x-15=159 | | 4-z=15 | | 3x-7=2x-10+x+3 | | 7(6/5-b)3/5b=2/5(b+5) | | 7x/3+13/2-7x/6=17/12-3x$ | | 37+8x=4(7+2x) | | 2(w-1)=3(4w+2) | | z2=-18z-4z | | 5x-(-5)=45 | | -0.9x+0.8x+8=4 | | 13=-3x=7-2x-1+x |